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Scheinbar müßte nach (A 19) A ( l‘, r )  selbst Spektrum von vtlo , wobei der Nenner des ersten 

HERMiTEsch sein. Die Summe über n ist aber in Gliedes durch vn0 — v + ib  mit einem kleinen Imagi- 

Wirklichkeit ein Integral über ein kontinuierliches närteil b ersetzt werden muß (s. M o l i e r e  2 6 ) .

Anhang 3. Orthogonalität und Normierung von Blochschen Funktionen im unendlichen Gitter

1) BLOOHsche Funktionen mit unterschiedlichen f-Werten sind orthogonal. Denn es gilt nach (5)

f(ß(i)(v, f ) * p<»(r, ( ') )  dr = 2  exp { - 2 .Ti ( f - f\ SR,)} J (ß®(r, f ) *ß® (r, f ' ) ) dr
oo l  V

=  J <5(!-f) J ( ß » ( r , ! ) *  ß (̂ ( r , f )  )dr. <A2?)
V

2) BLOGHsche Funktionen mit gleichen f-Werten und unterschiedlichen Bandindizes (i) sind in einer 

Einheitszelle orthogonal. Dies kann man aus der HERMiTEschen Eigenschaft des Operators rot rot + u un­

mittelbar folgern.

Es gilt also ßW) dr = 0 , wenn v® ( !)2 *  v«> ( !)2. (A28)
V

Im Falle der Entartung, d .h . wenn ( ! ) 2 =  ( ! ) 2 für (i) =# (/), kann man, wie üblich, durch eine 

lineare Kombination orthogonale Funktionen bilden.

3) (A27) und (A28) zusammenfassend kann man schreiben

j(ß®(r,f)* ß®(r,f') ) dr = Ä„<5(f-n ' j* (ß® (r, f)* ß®(r, () ) dr. (A 29)

oo V

Zur Normierung kann man über den Wert des Integrals auf der rechten Seite verfügen.

Anhang 4. Entwicklung der Wannierschen Gleichung nach Potenzen von (2 n i y.0) 1

Wirsetzen (81) in (82) ein und berücksichtigen nur die Glieder mit den Potenzen (2 7iix0)° und 

(2 tz i x0) _1. Es ist unmittelbar klar, daß die Glieder mit (2 7zix0)° von dE F durch öE(\/t S0,x) F 

gegeben sind. Die Glieder mit (2 7iix0)~l von dE F werden vernachlässigt (s. Text). Deshalb haben wir 

nur noch die Glieder mit (2 rr ix 0)~i von E F aufzusuchen.

Nach (60) ist

e(  -* - V i , t )=  V  -*, ( 1 Vr-f0. V f)"£(t ,r) ( f . )• (A30)
\ 2 n i x 0 I n ! V 2 jz i x0 )

Mit (81) folgt

E F = [ I  „ V ( v .s .+  2- ( A31)

+ Z v f  n(n2~ 1> [ b k  V . V tX V . s . V i ) ] ! , ! , ! ) ^
M =  2

+ 0((2jtix„)~*) j F.

Durch sukzessive Anwendung der Operation (1/2 n i y.Q-Vr ~ » V?) von (A30) ergibt sich die erste 

Summe von (A 31 ), wenn alle Operatoren Vr auf E wirken. Die zweite Summe entsteht, wenn ein 

Operator nicht auf F, sondern auf einen der durch die vorherige Operation entstandenen Faktoren 

(Vr — ?o j V f) wirkt. Die Zahl soldier Glieder ist durch n(n — l)/2  gegeben. Das Glied (2 n  Vr
wird aus der zweiten Summe fortgelassen, weil es die Potenz (2 .'t ix 0) -2 ergibt.
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(A 32)

Durch Entwicklung der n-ten Potenz in der ersten Zeile von (A31) entsteht

~E F - ! £  A  V r) •£ ( ( ,t)<£,
Ui =  0 n •

+ 2  (” iyr V f ) - ‘ VÄv , - )  i d . ) * ,

1 ° °  -1 ____ ys ____ i  ____ ____ ____ yv yv ys

+ ~2 2  t — 9 7 7 s< > ~ V ? ) ” - 2  -r— ( Vt Vi )  (V ts 0 Ar) £ (£ tH )

+ 0 ((2  7 iiX„)~2) j F .

Mit der Definition von E(t, r) [ähnlich wie (A 30)] ergibt sich

EF=  j£ (V ,S „ i)  + — l—  (V.S* V f) £(f,r) <f_v .?,)
I 1 J l I X  o

+ T4 - | ( V tV r ) 2 S .£ A r ) (f. V[s,) + O ((2 ^^0)-*)| F, (A33)
2 ti i  x 0 2 

wobei die Ausdrucksweise

[ (V , Vf) ('V,S„ V,-)] E(f, r) - (V, V,-)2 s„£(f, r) (A34)

benutzt wurde.

Anhang 5. Aufbau und Bewegung von Wellenpaketen nach der Strahlenoptik

Nach (99) und (100) hat man

F(t, r) =  exp {2 t i  i (S0(r) — v0 f)} . (A 35)

Das vollständige Integral 28 der Eikonalgleichung (65) bzw. (86) sei durch S0(r a1 a2 v0) + a3 gegeben. Die 

beiden Konstanten ax und a2 sind etwa durch die Einstrahlungsbedingungen bestimmt. Man nehme z. B. 

an, daß eine ebene Welle auf eine ebene Eintritts fläche des Kristalls einfällt. Dann sind und a2 die 

beiden zur Oberfläche parallelen Komponenten des Wellenvektors der einfallenden Welle.

Man bildet aus den einfallenden ebenen Wellen mit verschiedenen Werten von at , a2 und v0 ein Wellen­

paket. Dieses nimmt nach Eintritt in den Kristall die Form an:

F(t,x) = j j j A ( a 1a2v0) exp {2 n i <p (ax a.2 v0) } exP {2 n  i[S0(r a2 y0) — v0 t + a3] } dax da2 dv0 . (A36)

A(axa2v0) und cp(a1a2v0) sind aus der Konstruktion des Paketes im Vakuum bestimmt.

Das Zentrum des Paketes befindet sich dort, wo die Phasen der Komponentenwellen übereinstimmen. 

Dies bedeutet, daß die Phase des Integranden von (A36) als Funktion der Parameter at , a2 und v0 sta­

tionär wird. Wenn man setzt

<P =<p(a1a2v0) + 50(r a 1a2r0) -v0t + a3, (A37)

dann soll gelten = 0 , =  0 , = 0 . (A 38)
dflj öa2 ör0

Daraus folgt | §L  =  _  | *  , =  _  |2-, M  _  | 2 - . (A39)
oaj daj oa2 oa2 dv0 <3r0

d<f>/da1, d(p/da2 und dcp/dv0 sind Konstanten, die durch die Einstrahlungsbedingungen, d. h. in unserem 

Beispiel durch die Anfangswerte der beiden Ortskoordinaten und der Zeit am Durchgangspunkt auf der 

Eintrittsfläche vorgegeben sind.

28 Zum Beispiel A. S o m m e r f e l d , Vorlesungen über theoretische Physik, Band I, Mechanik, 7 . Aufl., Akadem. Verlagsges. 

Leipzig 1964, Kap. 8.
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Nach dem bekannten Jacobi sehen Satz28 sind die Werte von t, r und f =  \/xS0, die (A39) erfüllen,

d. h. die Bewegung des Paketes beschreiben, gerade die Lösungen der kanonischen Gin. (102) und (103).

Dieser unmittelbare Zusammenhang zwischen dem jAcomschen Satz und der Vorstellung des Paket­

zentrums als dem Punkt der stationären Phase scheint bisher nicht richtig erkannt worden zu sein 29.

Herrn Prof. Dr. K. M o l i e r e  danke ich für die Förderung dieser Arbeit, für zahlreiche Hinweise und wesent­
liche Hilfe bei der Zusammenstellung des Manuskriptes. Herrn Dr. E. H. W a g n e r  gilt mein Dank für wertvolle 
Diskussionen.

29 Vgl. The Mathematical Papers of Sir W . R. H a m il t o n . S y n g e ) ,  Cambridge Univ. Press. Cambridge 1931, S . 500

Vol. I. Geometrical Optics (ed. A. W . C o n w a y  u . J. L. (Editor’s Appendix, Note 20).

Mean Amplitudes of Vibration, Thermodynamic Functions, Molecular 

Polarizability and Absolute Raman Intensities of Vg Modes in Carbon 

Subnitride*

G. N a g a r a j a n ,  E. R. L i p p i n c o t t ,  and J. M. S t u t m a n  * *

Department of Chemistry, University of Maryland, College Park, Maryland. U.S.A.

(Z. Naturforschg. 20 a. 786— 793 [1965] ; received 6 January 1965)

Vibrational and structural informations for carbon subnitride, a molecule possessing a linear 

symmetrical structure with the point group h , have been used to determine the mean-square 

amplitude quantities and mean amplitudes of vibration for the bonded and nonbonded atom pairs 

at the temperatures T — 0 and T =  298 °K  by the C y v in  method. The molar thermodynamic func­

tions have been computed for the temperature range 100 — 6000 °K  on the basis of a rigid rotator, 

harmonic oscillator model. Bond polarizabilities, molecular polarizability and polarizability deriva­

tives corresponding to absolute R a m a n  intensities of modes in the ground electronic state have 

been calculated by the L ip p in c o t t -St u t m a n  method employing the delta-function potentials.

Carbon subnitride has a system of three con­

jugated triple bonds and was first reported by 

M o u r e u  and B o n g r a n d  1 and later by B l o m q u i s t  and 

W i n s l o w  2. One may find its physical and chemical 

properties described in a review form by M o u r e u  

and B o n g r a n d  3. An X-ray diffraction study of the 

crystal structure by H a n n a n  and C o l l i n  4 has estab­

lished that carbon subnitride has a linear symmetri­

cal configuration with the symmetry point group 

c i , . M i l l e r  and H a n n a n  5 studied both the in­

frared absorption and R a m a n  spectra of this mole­

cule in the liquid and gaseous states, assigned on the

* This research was supported in part by a Materials Science 

Program from the Advanced Research Projects Agency. 

Department of Defense and the National Institutes Health 

Physical Chemistry Training Program.

** Present Address: The Hospital for Special Surgery, 535 

East 70th Street, New York 21, New York.

1 C. M o u r e u  and J. C. B o n g r a n d . Bull. Soc. Chim. Beiges 5 . 

846 [1909].

2 A. T. B lo m q u is t  and E. C. W in s l o w , J. Org. Chem. 10, 149 

11945].

basis of a h symmetry eight of the nine funda­

mental frequencies and carried out a normal co­

ordinate treatment. The same investigations were 

later repeated by M i l l e r ,  H a n n a n  and C o u s i n s  6, all 

but one of the fundamentals were directly observed 

by locating many more R a m a n  lines and infrared 

bands and the vibrational assignments were revised. 

The near ultraviolet spectrum of this molecule in 

solution and vapour phase was studied and a vibra­

tional analysis of one of the two band systems was 

made by M i l l e r  and H a n n a n 7 . Carbon subnitride 

has the same conjugated bond system as dimethyl-

:1 C. M o u r e u  and J. C. B o n g r a n d , Ann. Chem. 14, 5 [1920].

4 R. B . H a n n a n , j r . and R. L. C o l l in , Acta Cryst. 6. 350

[1953].

5 F. A. M il l e r  and R. B. H a n n a n , j r ., J. Chem. Phys. 21. 

110 [1953],

(i F. A. M il l e r , R. B . H a n n a n , j r ., and L. R. C o u s in s . J. Chem. 

Phys. 23, 2127 [1955].

7 F. A. M il l e r  and R. B. H a n n a n , j r ., Spectrochim. Acta 12, 

321 [1958].
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triacetylene 8, plus a pair of nonbonding electrons 

with opposite spins on each nitrogen atom and 

should therefore exhibit all the ji-ti transitions of 

dimethyltriacetylene in addition to the n-rr transi­

tions 9. M i l l e r  and H a n n a n  7 explained the two ob­

served band systems and made a new vibrational 

assignments for the ground and upper states in con­

junction with the earlier investigations5- °. The 

results favour a linear conformation in both the 

ground and upper states. The fundamental frequen­

cies in cm-1 for carbon subnitride in the ground 

state are given in Table 1.

Symmetry Fre­ Schematic Description of the
As­

Species quency Mode
sign­

ment

Symmetrical C =  N stretching 2290
V + V.2 Symmetrical C =  N stretching 2129

>'3 Symmetrical C — C stretching 692

’ ’4 Asymmetrical C =  N stretching 2241
V  + 

— tl r 5 Asymmtetrica C — C stretching 1154

*’« Asymmetrical C — C =  N bending 504
J ig

V7 Asymmetrical C — C =  C bending 263

V 8 Symmetrical C — C =  N bending 472
71 u

V9 Symmetrical C — C =  C bending 107

Table 1. The observed fundamental frequencies in cm 1 

carbon subnitride.

for

It is the aim of the present investigation to evalu­

ate the mean amplitudes of vibration by the C y v i n  

method 10 with the recent vibrational and structural

data compute the statistical thermodynamic

functions on the basis of a rigid rotator, harmonic 

oscillator model and calculate the molecular polariz- 

ability and derived polarizabilities by the L i p p i n c o t t — 

S t u t m a n  method 11 employing the delta-function 

potential for carbon subnitride.

Mean Amplitudes of V ibration

The carbon subnitride molecule having a point 

group Ax>h gives rise to thirteen vibrational degrees 

of freedom constituting nine fundamental frequen­

cies which are distributed under the various irre­

ducible representations as follows:

3 vg+(R, p) + 2 2 V (1 ,1) + 2 R, dp) + 2 jiu(I, J_)

where R, I, p, dp, and _L stand for R a m a n  active, 

infrared active, polarized, depolarized, parallel and 

perpendicular, respectively. On the basis of its struc­

ture one could expect a resonance between the two 

C — C vibrations because of mechanical coupling 

provided by the connecting C =  C bond and a con­

sequence of which the energy levels would repel one 

another resulting in one being abnormally high and 

the other abnormally low. This is evidently seen 

from 692 cm-1 as the frequency of the C —C sym­

metrical stretching vibration and 1154 cm-1 as the 

C — C asymmetrical stretching vibration. A similar 

situation may be observed in the case of dimethyl­

triacetylene 12. This gives an additional support to 

M i l l e r  and H a n n a n  6’ ' for their choice of 692 cm-1 

as the frequency of the C — C symmetrical stretching 

vibration.

Thirteen internal coordinates have been selected 

here to describe the thirteen vibrational degrees of 

freedom and they are given as follows: rx and r2 are 

the C =  N stretching coordinates; t is the C =  C 

stretching coordinate; dx und d2 are the C — C- 

stretching coordinates; and 0 2 designate the 

C — C =  N bending coordinates in the x z plane while 

(9/ and @2 designate the same in the yz  plane;

, &2 , </>/ and (P2 designate the C — C =  C bend­

ing coordinates in the x z and y z planes as those of

e,0! 6,6,

Fig. 1. Geometric illustration of the internal coordinates for carbon subnitride. The symbols denote the deviations from the 

equilibrium  values. The equilibrium C = N , C —C and C =  C bond lengths are identified by the symbols R, D  and T, respectively.

8 M. B e e r , J. Chem. Phys. 25, 745 [1956].

9 J. R. P l a t t , J. Opt. Soc. Amer. 4 3 , 252 [1953].

10 S. J. C y v in , Spectrochim. Acta 15, 828 [1959].

11 E. R. L ip p in c o t t  and J. M . S t u t m a n , J. Phys. Chem. 68. 

2926 [1964].

12 I .  M .  M i l l s  and H. W . T ho m p so n . Proc. Roy. Soc., Lond. 
A 226, 306 [1954],
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0 ’s (see Fig. 1). The equilibrium interbond dis­

tances C =  N, C =  C and C — C are being represented 

here by the symbols R, T and D, respectively. On the 

basis of the principle outlined by W i l s o n  13, a set of 

symmetry coordinates satisfying the conditions of 

normalization, orthogonality and transformations of 

the concerned irreducible representations has been 

constructed with the help of the internal coordinates 

described above and given in the following:

) =  (ri + r2)/V/2;

S2(Z g+) = t ;

S3(Zg+) = (di + d2)/V2;

54(2 ’u+) =  (r1- r 2)/l/2 ;

S-AZu+) = (d1-d.2)IV2;

S6A n e ) = (R D )1,'(& 1- 6 2)/V  2 ;

5tjb(7rg ) =  (7?Z))1/l( 0 i '- 0 2 /) / / 2 ;

57a( Jig) =  (D TYlt{0 1 — ^ 2)/V/2|

Sn(7ig ) - (D T ) lH $ i ' - * t ) I V  2;
58a( ) = (R D )1,i( 0 1 + G2)JV2;

S8h( j i a ) = (R D ) 'H & i+ & 2 ) /1/2; 

SH (n n )  =  (D T )i,'(& 1 + &2)/V2 

and S9b( ) =  (D + & 2 )J]/2 .

Here the angle displacements are multiplied by the 

equilibrium bond lengths /?(C =  N ), 7’ (C =  C) and 

D (C —C) in order to keep the dimensions of the 

mean-square amplitude quantities referring to the 

angle bending the same as those of the quantities due 

to the bonded atom pairs. On the basis of the prin­

ciple postulated by W i l s o n  13 and F e r i g l e  and 

M e i s t e r  14, the G matrix elements related to the 

kinetic energy have been obtained in terms of the 

above set of symmetry coordinates. One would 

normally expect twenty five mean-square amplitude 

quantities for a molecule of the present investigation, 

but the high symmetry of the molecular system 

reduces these to fifteen. Since the parallel and per­

pendicular vibrations do not occur in the same 

symmetry species, the mean-square amplitude quan­

tities due to the interaction between the bonded atom 

pairs and interbond angles are not at all permitted in

13 E. B. W il s o n , j r ., J. Chem. Phy. 7, 1047 [1939] ; 9, 76 

[1941].

14 S. M . F e r ig l e  and A. G .  M e is t e r , J. Chem. Phys. 19, 982

[1951].

15 G .  G l o c k l e r , Rev. Mod. Phys. 15, 111 [1943].

16 G .  G l o c k l e r  and J. T u n g , J. Chem. Phys. 13, 388 [1945].

17 P. T o r k in g t o n , J. Chem. Phys. 17, 357 [1949].

18 P. T o r k in g t o n , Proc. Roy. Soc., Lond. A 64, 32 [1951].

this case. Following the method of C y v i n  10, the 

symmetrized mean-square amplitude matrices in 

terms of the mean-square amplitude quantities were 

obtained by introducing the symmetry coordinates.

From the secular equation 2  G~x — EA | =  postu­

lated by C y v i n  10, the secular equations giving the 

normal frequencies in terms of the mean-square 

amplitude quantities were constructed at the tem­

peratures T — 0 and T =  298 °K  with help of the 2  

and G matrices and vibrational and structural 

data 4’ Since it is not possible to evaluate all the 

symmetrized mean-square amplitude matrices under 

the symmetry species — g+, the off-diagonal elements 

were neglected for the sake of convenience to solve 

the diagonal elements. In the cases of other sym­

metry species, there are two diagonal elements and 

one off-diagonal element with two equations under 

each symmetry species. The equations resulted in 

imaginary values for the diagonal elements when the 

off-diagonal element was neglected. Hence the off- 

diagonal element was taken into consideration and 

the equations were solved under each symmetry 

species in the manner described by earlier investiga­

tors 15~22. The calculated values of the symmetrized 

mean-square amplitude matrices in Ä2 are given in 

Table 2 at the temperatures T = 0 and T = 298 °K, 

and the calculated values of the mean-square ampli­

tude quantities in Ä2 at these temperatures are given

Element

Symmetrized mean-square amplitude 
matrix

T= 0 T =  298 °K

0.0009553 0.0009553

0.0012464 0.0012485

^ 3 3 0.0013076 0.0013154

- 4 4 0.0014564 0.0014564

^ 5 5 0.0021246 0.0021382
V

^ 4 5 -0.0008138 -0.0008247

^ 6« 0.0078135 0.0131246

- 6 7 0.0021854 0.0025544

- 8 8 0.0039182 0.0095125

^ 9 9 0.0035675 0.0088236

^ 8 9 -0.0009984 0.0021078

Table 2. Symmetrized mean-square matrices in A 2 for carbon 

subnitride.

19 J. D u sc h e sn e  and L .  B u r n e l l e , J. Chem. Phys. 19, 1191

[1951],

20 J. D u s c h e sn e  and A. H .  N ie l s e n , J. Chem. Phys. 20, 1968

[1952].

21 J. W . L in n e t t  and D .  F. H e a t h , Trans. Faraday Soc. 48, 

592 [1952].

22 S. S m it h  and J. W . L in n e t t , Trans. Faraday Soc. 52, 891 

[1956].
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Symbol
Mean-square amplitude quantity 

T=0 T=298 °K

Or 0.0012059 0.0012059

Orr -0.0002506 -0.0002506

Od 0.0017161 0.0017268

Odd -0.0004085 -0.0004114

Ot 0.0012464 0.0012485

Ord -0.0008138 -0.0008247

°& 0.0058658 0.0113186

°e& -0.0019477 -0.0018061

Oq, 0.0054331 0.0104261

OqxP -0.0018656 -0.0016025

°e<p 0.0005935 0.0023311

°r-hd 0.0021082 0.0021080

0.0029625 0.0029753

Or + d + t 0.0033546 0.0033565

Or + 2d + t 0.0038211 0.0038367

02r + 2d + t 0.0057722 0.0057899

Table 3. Mean-square amplitude quantities in Ä2 for carbon 

subnitride.

in Table 3 where or , od and ot are the mean-square 

amplitude quantities due to the bonded atom pairs 

C =  N, C —C and C = C , respectively; oe and o<p 

are the quantities due to the bendings C — C =  N and 

C — C = C , respectively; orr, odd , ord , oee , o$$ , oe$ 

and oe<t>' are the respective interaction quantities;

+ d 5 gd + ti + d + 1 > + 2 d + 1 and o2r+2 d + t are the 

quantities due to the nonbonded atom pairs

N i- C o , C i- C j ,  N i- C g ,

Nj — C4 and N j —No,

respectively. The corresponding calculated values of 

the mean amplitudes of vibration in Ä for the bonded 

as well as nonbonded atom pairs are given in Table 4.

Distance

Mean amplitude of 

vibration

7 = 0  T= 298 °K

C = N 0.0347 0.0347

C - C 0.0414 0.0416

c = c 0.0353 0.0354

N i---C, 0.0459 0.0459 Table 4.
Ci c 3 0.0544 0.0545 Mean amplitudes
N i---C3 0.0579 0.0579 of vibration
N i---C4 0.0618 0.0620 in A for carbon
N t---N , 0.0759 0.0761 subnitride.

23 A. A. W f.st e n b e r g  and E. B. W il s o n , j r ., J. Amer. Chem. 

Soc. 72, 199 [1950].

24 A. L a n g se t h  and C. K .  M o l l e r , Acta Chem. Scand. 4, 725 
[1950],

25 L . P a u l in g , H. D. S p r in g a l l , and K .  J. P a l m e r , J. Amer. 

Chem. Soc. 61,927 [1939].

26 A. H. N e t h e r c o t , J. A. K l e in , and C. H. T o w n e s , Phys. Rev. 
86, 798 [1952].

The mean-square amplitude quantities due to the 

bendings are very much greater than those due to the 

bonded and nonbonded atom pairs. The situation is 

reversed for the corresponding force constants. The 

quantities due to the nonbonded atom pairs are very 

greater than those due to the bonded atom pairs. The 

values of the mean-square amplitudes of vibration at 

the two temperatures are not very different for the 

parallel vibrations but they are for the perpendicular 

vibrations. In the cases of nonbonded atom pairs, 

the mean amplitudes of vibration are in the increas­

ing order as expected with the increase of interbond 

distances. In the cases of bonded atom pairs, the 

mean amplitudes of vibration are in the decreasing 

order with the increase of bond orders (see Table 4). 

Of particular interest is the fact that the interbond 

distances in carbon subnitride are about the same as 

those found in the three related molecules 23-26; 

cyanoacetylene, hydrogen cyanide, cyanogen and 

diacetylene, hydrogen cyanide, cyanogen and di­

acetylene. The mean amplitudes of vibration at room 

temperature are as follows: 0.0347 Ä in carbon sub­

nitride, 0.0349 Ä in cyanogen 27 and 0.0342 Ä in 

hydrogen cyanide 28 for the C =  N bond; 0.0416 Ä 

in carbon subnitride and 0.0419 Ä in cyanogen 27 

for the C —C bond; 0.0354 Ä in carbon subnitride 

and 0.0358 Ä in acetylene 29 for the C =  C bond. 

This clearly shows that the addition of the third 

triple bond to a conjugated system has only a minor 

effect on the structure. Hence the values of mean 

amplitudes of vibration are readily transferable to 

related systems having similar chemical bonds with 

nearly identical interbond distances.

Thermodynamic Functions

The molar thermodynamic functions such as heat 

content, free energy, entropy and heat capacity of 

carbon subnitride were calculated using the vibra­

tional and structural data 4’ 7 for the temperature 

range 100 — 6000 °K. A rigid rotator, harmonic 

oscillator model was assumed and all the quantities 

were calculated for a gas in the thermodynamic

27 S. J. C y v in  and E. M e is in g s e t h , Acta Chem. Scand. 15,

1289 [1961].
28 E. M e is in g s e t h  and S. J. C y v in , Acta Chem. Scand. 16,

1321 [1962].

29 E. M e is in g s e t h  and S. J. C y v in , Acta Chem. Scand. 15,

2021 [1961].
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Standard gaseous state of unit fugacity (one atmos­

phere) . The standard formulae and tables of func­

tions for the harmonic oscillator contributions were 

used from P i t z e r  30. The principal moments of

T (.H 0-E0°)/T -(F0-E0o)/T S# r  0
w>

100 9.026 37.584 46.610 11.944
150 10.481 41.289 51.770 14.758

200 11.853 44.716 56.569 17.186
273.16 13.671 48.709 62.380 19.834

298.16 14.208 49.894 64.102 20.528

300 14.261 50.025 64.286 20.576

400 16.101 54.317 70.418 22.661

500 17.570 58.093 75.663 24.153
600 18.774 61.400 80.174 25.373
700 19.796 64.412 84.208 26.395

800 20.681 66.775 87.456 27.257

900 21.453 69.625 91.078 27.997

1000 22.131 71.950 94.081 28.616

1100 22.754 74.062 96.816 29.140
1200 23.213 75.939 99.152 29.583
1300 23.794 77.878 101.672 29.953
1400 24.256 79.724 103.980 30.273

1500 24.681 81.564 106.245 30.543
1600 25.036 82.854 107.890 30.773
1700 25.373 84.540 109.913 30.968

1800 25.689 86.173 111.862 31.142
1900 25.994 87.421 113.415 31.298

2000 26.246 88.563 114.809 31.423
2200 26.728 91.257 117.985 31.636

2400 27.173 93.877 121.050 31.816

2600 27.507 95.623 123.130 31.947

2800 27.835 98.068 125.903 32.056

3000 28.113 99.724 127.837 32.145

3200 28.365 101.361 129.726 32.221

3400 28.598 103.018 131.616 32.283

3600 28.794 104.975 133.769 32.334
3800 28.992 106.530 135.522 32.381

4000 29.170 108.029 137.199 32.420

4200 29.316 109.139 138.455 32.453

4400 29.463 111.182 140.645 32.482

4600 29.596 112.502 142.098 32.508

4800 29.703 113.367 143.070 32.530

5000 29.811 114.246 144.057 32.551

5200 29.941 115.863 145.804 32.569

5400 30.034 116.722 146.756 32.584

5600 30.111 117.482 147.593 32.597

5800 30.189 118.611 148.800 32.608

6000 30.285 119.698 149.983 32.621

Table 5. Heat content, free energy, entropy and heat capacity 

of carbon subnitride for the ideal gaseous state at one atmo­

spheric pressure. T is the temperature in °K ; the other quan­

tities are in cal. deg- 1 mole“ 1 and E0° is the enery of one 

mole of perfect gas at absolute zero temperature.

30 k . S . P it z e r , Quantum Chemistry, Prentice-Hall, Inc., New 

York 1953.

51 D. R. S t u l l .  J. Chao, T. E. D ergazarian, S . T. H adden, H. 

P rophet, J. A. Rizos, and A. C. Swanson, Jo int Army-Navy- 

A ir Force Thermochemical Data, The Advanced Research 

Projects Agency Programme, U.S. A ir Force Contract No. 

AF 33 (616)-6149, The Dow Chemical Company, Thermal 

Laboratory, M idland, Michigan, March 31, 1961.

32 G. T. A m st ro n g  and S. M a r a n t z , J. Phys. Chem. 64, 1776

[I960].

inertia were calculated from the X-ray diffraction 

study 4 and their values are:

/ „  - l yu =  27.7126 AWU A2(46.0342x l ( r 40 g cms); 

/ »  =  0 .

A  symmetry number of 2 was assumed in the cal­

culations. The contributions due to the centrifugal 

distortion, isotopic mixing and nuclear spins were 

neglected in the calculations. The calculated values 

of the thermodynamic functions in cal. deg~* - mole-1 

for carbon subnitride are given in Table 5. S t u l l  

and his associates 31 calculated the thermodynamic 

quantities from the earlier vibrational data5 and 

their values for entropy and heat capacity in cal. 

d e g ^ m o le -1 at room temperature are 69.314 and 

20.528, respectively. The corresponding values in 

cal. deg_ 1-mole_1 from the present study are 64.102 

and 20.528, respectively. Their higher value for the 

entropy is probably due to the unreliable vibrational 

assignments particularly for the deformation modes. 

A m s t r o n g  and M a r a n t z  32 measured the heat of 

combustion of carbon subnitride in the liquid state 

and calculated the heat of formation in the gaseous 

state at room temperature as 120.6 kcal, mole-1 

from the data for the heat of vapourization given by 

S a g g i o m o  33. No other experimental or calculated 

values of the thermodynamic quantities are available 

in the literature.

Molecular Polarizability

On the basis of quantum mechanical models 

several approaches have been made in recent years 

and developed in many ways to compute the atomic 

and molecular polarizabilities in order to test how 

far the polarizability could be a useful criterion for 

testing the accuracy of wave functions chosen 34_39. 

L i p p i n c o t t  and S t u t m a n  11 developed from a delta- 

function potential a method of generating component 

polarizabilities in order to compute the molecular or 

average polarizabilities with a>[ =  (04 + oc2 + <*3) 

where a, , a2 and a3 refer to the three principal

33 A. J. S a g g io m o , J. O rg . C h e m . 22, 1171 [1957].

34 H . R . H a s s e , P roc . C a m b r id g e  P h i l .  Soc. 26. 542 [1930].

35 R . A. B u c k in g h am , P ro c . R o y . Soc ., L o n d . A 160, 94 [1937].
36 J. G. K ir k w o o d , P h y s ik . Z. 33, 57 [1932],

37 R . P . B ell a n d  D. A. L ong , P ro c . R oy . Soc., L o n d . A  203, 

364 [1950].

38 J. A . A bbott a n d  H. C . B olton , J. C hem . P hy s . 20, 762

[1952],

39 H. J. K o lk er  a n d  M. K a r p lu s , J. C hem . P hy s . 39, 2011

[1963].
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polarizability components. The molecular polariz- 

ability is composed mainly of bond parallel com­

ponents obtainable from molecular delta-function 

model and bond perpendicular components ob­

tainable from the atomic delta-function polarizabili- 

ties. In addition, corrections to the parallel and per­

pendicular components are made to compensate for 

polarity effects. The contribution to the parallel com­

ponent by the bond region electrons is calculated 

using a linear combination of atomic delta-function 

wave functions representing the two nuclei involved 

in the bond and analytically expressed as

a||b =  4 r a ^ 12(l/ao) ( (x2) ) 2

where A12 is the root mean-square delta-function 

strength of the two nuclei, a0 the B o h r  radius, n the 

bond order and (x2) the mean-square coordinate of 

a bonding electron which may be expressed as

(z2> = (R2/4) + (1/2 c 2) .

Here R is the internuclear distance at the equilibrium 

configuration.

The nonbond region electron contribution to the 

parallel bond component a||n is calculated from the 

fraction of the electrons in the valence shell of each 

atom not involved in bonding and its respective 

atomic polarizability; and the basis for such calcula­

tion is the L e w i s —L a n g m u i r  octet rule 40, 41 modified 

by L i n n e t t  42 as a double-quartet of electrons. As an 

example, the electronic configuration of carbon sub­

nitride is given according to the L i n n e t t  electronic 

picture of bonding as follows

* N  x - C x - C x - C x - C x - N *
X  - X • X  •

where the “dots” represent electrons with spins of 

+ 1/2 and the “crosses” electrons with spins of

— 1/2. If each nitrogen atom has two electrons in 

its ground electronic or valence shell, then the non­

bond region electron contribution for this molecule 

is an n =  (4/5) aN since 2 of 5 electrons in the valence 

shell of each nitrogen atom are not involved in the 

bond formation according to the L i n n e t t  electronic 

picture of bonding42. This may analytically be 

expressed as 2  a,, n =  2  fj a;- where fj is the fraction 

of electrons of the j th atom not involved in the bond 

formation and a;- the atomic polarizability of the j  th

40 G. N. L e w is , J. Amer. Chem. Soc. 38, 762 [1916].

41 I. L a n g m u ir , J. Amer. Chem. Soc. 38, 2221 [1916].

42 J. W . L in n e t t , J. Amer. Chem. Soc. 83, 2643 [1961].

atom which would be obtainable from delta-function 

strength.

L i p p i n c o t t  and S t u t m a n  11 assumed that the per­

pendicular component of a diatomic molecule is 

simply the sum of the two atomic polarizabilities and 

this assumption is partially justified by a pictorial 

representation of perpendicular distortion, a = 2  aA 

for a non-polar diatomic A2 molecule. This principle 

was extended to polyatomics from a consideration of 

the structure of the molecule and the assumption 

that each atom if it were not bonded would possess 

three degrees of atomic polarizability freedom. If an 

atom forms one bond, one degree of freedom is lost,

e. g., a diatomic molecule has 4 residual degrees of 

freedom. If an atom forms 2 bonds which are linear, 

only one degree of freedom is lost, e. g. n{\f for C 02 

is only 6. Extending this principle to the carbon 

subnitride molecule, the atomic degrees of freedom 

remaining is 12. One may refer the earlier in­

vestigation 11 for a more detailed description. Thus 

the delta-function model gives explicit expressions 

for the parallel and perpendicular components and 

the mean polarizabilities for the diatomic as well as 

polyatomic systems. All these are in accordance with 

the investigations of D e n b i g h  43 regarding the bond 

refractions and bond and molecular polarizabilities.

The delta-function strengths A’s in atomic units, 

atomic polarizabilities a’s in 10-25 cm3 and c’s in 

atomic units adopted from the earlier investiga­

tions 11 for the present work are as follows:

An = 0.927, ay = 7.43, cx = 4.146,

A c =  0.846, ac =  9.78, cc = 3.384.

The c value for the carbon atom has been obtained 

in the manner described by L i p p i n c o t t  and D a y -  

h o f f  44 for a bond of polyatomic system. The cal­

culated values of the polarizabilities in 10~25 cm3 

for the C =  N, C —C and C =  C bonds are 21.309, 

13.268 and 23.034, respectively. The total value of 

the polarizability contribution to the parallel com­

ponent from the bond region electrons is obtained as

2  a i( b = 92.188 x l0 ~ 25 cm3.

The value of the polarizability contributions to the 

parallel component from the bond region electrons is 

given as

2 a lin = 2  f} ctj =  5.944 x 10“ 25 cm3.

43 K. G. D e n b ig h , Trans. Faraday Soc. 36, 936 [1940],

44 E. R. L ip p in c o t t  and M. O. D a y h o f f , Spectrochim. Acta

16, 807 [I960],
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The calculated value of the sum of the perpendicular 

components of all the bonds in the molecule is given 

as

2 2 aL =  107.960 x 10~25 cm3.

Hence the average molecular polarizability for car­

bon subnitride has been obtained as follows:

*M =  3 {2  a u b + 2  a„ n + 2  2 a j  

=  68.696 x 10~25 cm3.

There is no experimental value available in the 

literature for molar refraction of carbon subnitride 

to derive the molecular polarizability and make a 

comparison here.

Absolute Raman Intensities of 2 g+ Modes

There will be a change in the electron distribution 

and in the forces binding the nuclei when there are 

changes in the internuclear distances within the 

molecule; consequently, there will also be a change 

in the value of the electron polarizability. Much work 

has so far not been done on this aspect. There is an 

increase of the polarizability of the covalent bond as 

the bond goes from lower to a higher vibrational 

state. If the polarizability is a sensitive measure of 

the distortion of an electronic distribution under an 

applied electro-magnetic field, then the change in the 

polarizability with respect to the internuclear distance 

between the two atoms should be an effective cri­

terion for the covalency of a chemical bond. This 

quantity a =  (da/dR) on which the absolute in­

tensity of the R a m a n  scattering depends is experi­

mentally measurable from R a m a n  spectroscopic 

techniques. Absolute R a m a n  intensities are deter­

mined by the derivatives of molecular polarizability 

with respect to elongations of the various bonds 

within the molecule. When a bond stretches, the 

major change in the molecular polarizability is 

localized in that bond and so the derivative is a bond 

property indirectly related to the force constant. The 

value of the polarizability derivative depends on the 

bond type 45. It is exceedingly small for a pure ionic 

bond and very much larger for a pure covalent bond. 

The recent investigations on the group IV  tetra- 

halides 46 show that it has been assumed to be pro­

portional to the percent covalency and to the sum of

45 D. A. L o n g , Proc. Roy. Soc., Lond. A 217, 203 [1953].

46 L . A. W o o d w a r d  and D. A. L o n g , Trans. Faraday Soc. 45,
1131 [1949].

the atomic numbers of the central and peripheral 

atoms. It is directly proportional to the bond order 

for the hydrocarbon gases 47. The observed intensity 

of a R a m a n  line is given by 

K M  (I’o- i'p )4
I ■45 ( 8 a )n f 6__ \

I <5Q p )
11^6-7 o f) 'p [ l— exp( — h r j k  T]

where K is a constant, M the molar concentration of 

the scattering species, vp the vibrational frequency 

of the pth normal mode Qp , h the B o l t z m a n n  con­

stant, T the temperature in °K, a the average mole­

cular polarizability and o the degree of depolariza­

tion of the observed spectral line. Hence measure­

ment of the intensity of a R a m a n  line provides an 

immediate calculation for the experimental value of 

(<5 a/dQ) through well defined transformation, 

(da/dR) . It is aimed here to derive a functional form 

(da/dR) for the symmetrical stretching mode of a 

diatomic and polyatomic systems from the delta- 

function potential and apply this to the 2 g+ modes of 

oscillation in carbon subnitride.

The polarizability contribution from the bond 

region electrons to the bond parallel component for 

a polyatomic system is directly given here from the 

delta-function potential as follows:

= 4 n A12(l/a„) [ (fi2/4) + (1/2 cR2 ) ]2.

On differentiating this with respect to the inter­

nuclear distance R and neglecting terms of small 

magnitude, we have the following:

(SolJ S R )  = n A 1M a 0) (R3).

The molecular polarizability of a diatomic molecule 

is written as follows:

a=  (1/3) (a„+ 2 a jJ .

The necessary desired quantity is the change in the 

molecular polarizability due to the symmetrical 

stretching of the bond and the following approxima­

tion may be satisfied:

(da/SR) =  (S a JS R ) .

The quantity (da h/dR)2 is assumed to be directly 

proportional to the absolute R a m a n  intensity of the 

stretching mode in the ground electronic state. Hence 

we have

(da/dR) = (1/3 )(daJdR )

= (l/3)(<5al(b/<5fi) = » 4 ( 1 / 3 « , )  (fi3).

47 H. J. B e r n s t e in  and T. Y o s h in o , Paper read at the Institute 

of Petroleum Hydrocarbon Research Graoup Conference 

on Molecular Spectroscopy, London, February 1958.
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As the absolute intensities of R a m a n  lines due to the 

symmetrical C =  N, C — C and C =  C stretching vibra­

tions depend on the derivatives of the polarizabilities 

of the respective bonds, such calculations have been 

made here from the above derived equation using 

the internuclear distances, delta-function strengths, 

B o h r  radius, etc. given earlier for carbon subnitride. 

The calculated values of the polarizability derivatives 

in Ä2 for the C =  N, C —C and C =  C bonds are 

2.347, 1.227 and 2.411, respectively. These values 

compare well with those measured experimentally in 

other related systems having similar chemical bonds. 

They are 2.61 Ä2 for the C =  N bond in acetonitrile 48,

48 G. W. C h a n t r y  and R. A. P l a n e , J. Chem. Phys. 35, 1027

[1961],

1.37 Ä2 for the C — C bond in ethane 49 and 2.92 Ä2 

for the C =  C bond in acetylene 49. The bond region 

electrons alone are involved in the calculation of 

polarizability derivatives and the nonbond region 

electrons do not have any influence on the polariz­

ability derivative. As in the case of polarizability, 

polarizability derivatives also increase with the in­

crease in the bond order. From the results of the 

present investigation it is seen that the derivatives of 

polarizabilities are in general transferable from one 

molecular system to another with similar chemical 

bonds with nearly identical internuclear distances.

49 T. Y o s h in o  and H. J. B e r n s t e in , Spectrochim. Acta 14, 

127 [1959].

Light Mixing and the Generation of the Second Harmonic 

in a Plasma in an External Magnetic Field1
W i l h e l m  H. K e g e l  

Institut für Plasmaphysik, Gardiing bei München

(Z. Naturforschg. 20 a. 793— 800 [1965] ; received 9 February 1965)

The theory of light scattering in a plasma is extended by including an external electric field 

(e.g. the field of a laser beam) in calculating the density fluctuations. It is shown that in the 

presence of a time constant homogeneous magnetic field there arise density fluctuations with the 

frequency and the wave number of the external electric field. Expansions of the general expressions 

are obtained for the case that the frequency is large compared to the electron gyrofrequency. The 

special case that the external electric field is a transverse wave is discussed in detail.

The light of a second beam may be scattered by these forced density fluctuations. The scattered 

light has the sum and the difference frequency of the two light beams, i.e. light mixing occurs. In 

the framework of this theory the effect occurs only if the two beams are parallel. — If one con­

siders the scattering of the same beam that forces the density fluctuations, the scattered light is the 

second harmonic.

In the past few years several papers have been 

published dealing with the problem of the scattering 

of electromagnetic waves in a plasma. The radiation 

energy d/2 (a>2 M 2) with the frequency co2 and the 

wavevector k 2 that is scattered per second into a 

given solid angle do is given by

d/2 ( ^ 2  ? ^ 2) ===

Km l / 1(o)1,fc1)(|n(fe,co)|2)-/d9ö̂ a edo (1)
T —>00 1 I  71

where , k t) is the primary intensity with the

frequency co1, and the wave vector , oe is the 

scattering crossection for a single electron and T is

1 The basic ideas of this paper were reported in Proc. V Ith 

Intern. Conf. Ionization Phenomena in Gases, Vol. I l l ,  p. 

189, Paris 1963.

the duration of observation. The ensemble average is 

denoted by ( ) and n{k,w ) is the F o u r i e r  trans­

form of the electron density, where k  and 00 are 

given by

k 2 — k j -j- k  and (Oo — (Ô  -j- (o (2 a) 

or k 2 = k i — k  and co2 = co1 — co . (2 b)

These conditions mean that in general the fc-vectors 

must form a triangle.

From eq. (1) and (2) follows that the spectral 

distribution of the scattered radiation represents the 

spectral distribution of the electron density fluctua­

tions, if the primary radiation is monochromatic. By 

this the problem of calculating the spectrum of the 

scattered radiation is reduced to the problem of 

calculating the density fluctuations. This problem has


