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Scheinbar miiite nach (A 19) A(r,1") selbst Spektrum von v,,, wobei der Nenner des ersten
Hermitesch sein. Die Summe iiber n ist aber in  Gliedes durch »,)—v 4 i b mit einem kleinen Imagi-
Wirklichkeit ein Integral iiber ein kontinuierliches nirteil b ersetzt werden mufl (s. MovLiERE 26).

Anhang 3. Orthogonalitit und Normierung von Blochschen Funktionen im unendlichen Gitter

1) Brocusche Funktionen mit unterschiedlichen f-Werten sind orthogonal. Denn es gilt nach (5)
[ (r,H)* B (r,F))dr= Yexp{—2ai(f-, R} [BY(x,))*BD (r,F)) dx
oo ] v
= L=t (@YD BI(LE))dr. (427)
2) Brocusche Funktionen mit gleichen f-Werten und unterschiedlichen Bandindizes (i) sind in einer

Einheitszelle orthogonal. Dies kann man aus der Hermireschen Eigenschaft des Operators rot rot +u un-
mittelbar folgern.

Es gilt also [(BD*B@)dr=0, wenn »@(F)2+ 0 ()2 (A 28)
Im Falle der Entartung, d. h. wenn »@ (£)2=»7 (f)2 fiir (i) # (j), kann man, wie iiblich, durch eine
lineare Kombination orthogonale Funktionen bilden.

3) (A27) und (A 28) zusammenfassend kann man schreiben

f(ﬁ"")(r, H*BI(r, ) ) dr=0;0(f-1) i [(ﬂ"“(r, BH* B (r,f))dr. (A 29)

Zur Normierung kann man tiber den Wert des Integrals auf der rechten Seite verfiigen.

Anhang 4. Entwicklung der Wannierschen Gleichung nach Potenzen von (2 7ix,) ™!

Wir setzen (81) in (82) ein und beriicksichtigen nur die Glieder mit den Potenzen (27@iz,)? und
(2 i%,) L. Es ist unmittelbar klar, daB die Glieder mit (27i%)° von OEF durch OE(V/,S,,1) F
gegeben sind. Die Glieder mit (27i%,) ~! von OE F werden vernachlassigt (s. Text). Deshalb haben wir
nur noch die Glieder mit (27i%,) ! von E F aufzusuchen.

Nach (60) ist

Bt Fen]= ¥ LT % B i, (A30)

27ing
Mit (81) folgt

Br- {30 (Vder L VS Ve EGog,

n=0 """ ki

(A 31)

(-1 V.V (V. SAOV?)JEA(%’ D&

2min

+ Z 1 n(n—1) (VIS:()#fueV?)"W?

!
=1 2

+O((27ing)~2) : F.
Durch sukzessive Anwendung der Operation (1/2nizo'vr~f0, Vt) von (A30) ergibt sich die erste
Summe von (A 31), wenn alle Operatoren \/, auf F wirken. Die zweite Summe entsteht, wenn ein
Operator nicht auf F, sondern auf einen der durch die vorherige Operation entstandenen Faktoren
(Ve Sy—fy, /) wirkt. Die Zahl solcher Glieder ist durch n(n —1)/2 gegeben. Das Glied (2 7iz,)~1 /Sy

. . 5 . . 2 P e s
wird aus der zweiten Summe fortgelassen, weil es die Potenz (27wix,) ~* ergibt.
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Durch Entwicklung der n-ten Potenz in der ersten Zeile von (A 31) entsteht
RS A RGO
n=0 """

~

+ 3, (nj' 0 (Vs SAO‘%\O’V?)FI( l v‘SIVf) EA(?’I)(&)

= 1) 27ix, (A 32)
= & 3 Y| A =S
T3 P (n;727)7!k (Vr So—fo, Vf) - "2’;“.%0 (erE) (V: So Af) E(t, )i,
+0((27ix) 7?) } F.
Mit der Definition von E(f, 1) [dhnlich wie (A 30)] ergibt sich
EF: {E(Vr §0, 1) + 2*:;11, Z; (v: §1 V?) E(f’ r) F=78)
+y— g (Ve VS ER 1) ooy +0(2aing) ™) | F, (A 33)
Ting 2 t J
wobei die Ausdrucksweise
[(V V) (VoS V1ERT) = (V V)2 S Bt 1) (A34)
benutzt wurde.
Anhang 5. Aufbau und Bewegung von Wellenpaketen nach der Strahlenoptik
Nach (99) und (100) hat man
F(t,1) =exp {27i(Sy(r) —vpt)}. (A 35)

Das vollstandige Integral 2® der Eikonalgleichung (65) bzw. (86) sei durch S, (1 a; a, vy) + a3 gegeben. Die
beiden Konstanten a; und a, sind etwa durch die Einstrahlungsbedingungen bestimmt. Man nehme z. B.
an, daf} eine ebene Welle auf eine ebene Eintrittsfliche des Kristalls einfallt. Dann sind a; und a, die
beiden zur Oberfliche parallelen Komponenten des Wellenvektors der einfallenden Welle.

Man bildet aus den einfallenden ebenen Wellen mit verschiedenen Werten von a,, a, und », ein Wellen-
paket. Dieses nimmt nach Eintritt in den Kristall die Form an:

F(t,v) = [[[A(ajay7,) exp{27igp(a;asvy) }exp{2mi[Sy(rajayvy) —vot+as)} daydasdyy. (A 36)

A(ayas vy) und @ (aqa;v,) sind aus der Konstruktion des Paketes im Vakuum bestimmt.

Das Zentrum des Paketes befindet sich dort, wo die Phasen der Komponentenwellen iibereinstimmen.
Dies bedeutet, dal die Phase des Integranden von (A 36) als Funktion der Parameter a,, a, und », sta-
tiondar wird. Wenn man setzt

D =@ (a;asvy) +So(Tayasvy) —vyt+as, (A37)
3P P 3P
dann soll gelten Sa, 0, Sy 0, i 0. (A 38)
3S _ %9 38 _ 3¢ 35, ,_ _ 3¢
Daraus folgt 4, —  Ba,” Ba, ~  Ba; Bv, t= vy (A 39)

d¢/3a,, S¢/3a, und 3¢/, sind Konstanten, die durch die Einstrahlungsbedingungen, d. h. in unserem
Beispiel durch die Anfangswerte der beiden Ortskoordinaten und der Zeit am Durchgangspunkt auf der
Eintrittsflache vorgegeben sind.

28 Zum Beispiel A. SommerreLp, Vorlesungen iiber theoretische Physik, Band I, Mechanik, 7. Aufl., Akadem. Verlagsges.
Leipzig 1964, Kap. 8.
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Nach dem bekannten Jacosischen Satz?® sind die Werte von ¢, v und f=1\/,S,, die (A 39) erfiillen,
d. h. die Bewegung des Paketes beschreiben, gerade die Losungen der kanonischen Gln. (102) und (103).

Dieser unmittelbare Zusammenhang zwischen dem Jacosischen Satz und der Vorstellung des Paket-
zentrums als dem Punkt der stationdren Phase scheint bisher nicht richtig erkannt worden zu sein 9.

Herrn Prof. Dr. K. MouiEgre danke ich fiir die Forderung dieser Arbeit, fiir zahlreiche Hinweise und wesent-
liche Hilfe bei der Zusammenstellung des Manuskriptes. Herrn Dr. E. H. Wac~er gilt mein Dank fiir wertvolle

Diskussionen.

2% Vgl. The Mathematical Papers of Sir W. R. Hawmivrox,
Vol. I. Geometrical Optics (ed. A. W. Coxway u. J. L.

Syxge), Cambridge Univ. Press, Cambridge 1931, S. 500
(Editor’s Appendix, Note 20).

Mean Amplitudes of Vibration, Thermodynamic Functions, Molecular
Polarizability and Absolute Raman Intensities of > Modes in Carbon
Subnitride *
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(Z. Naturforschg. 20 a, 786—793 [1965] ; received 6 January 1965)

Vibrational and structural informations for carbon subnitride, a molecule possessing a linear

symmetrical structure with the point group D},

have been used to determine the mean-square

amplitude quantities and mean amplitudes of vibration for the bonded and nonbonded atom pairs
at the temperatures 7=0 and T=298 °K by the Cyvix method. The molar thermodynamic func-
tions have been computed for the temperature range 100 —6000 °K on the basis of a rigid rotator,
harmonic oscillator model. Bond polarizabilities, molecular polarizability and polarizability deriva-
tives corresponding to absolute Ramax intensities of X¢* modes in the ground electronic state have
been calculated by the Liprincort-SturMaN method employing the delta-function potentials.

Carbon subnitride has a system of three con-
jugated triple bonds and was first reported by
Moureu and Boneraxp ! and later by Bromquist and
Winstow 2. One may find its physical and chemical
properties described in a review form by Mourgu
and Boxcranp 2. An X-ray diffraction study of the
crystal structure by Hanvax and Coruin * has estab-
lished that carbon subnitride has a linear symmetri-
cal configuration with the symmetry point group
D.,. MiLLer and Hannan? studied both the in-
frared absorption and Ramax spectra of this mole-
cule in the liquid and gaseous states, assigned on the

* This research was supported in part by a Materials Science
Program from the Advanced Research Projects Agency,
Department of Defense and the National Institutes Health
Physical Chemistry Training Program.

** Present Address: The Hospital for Special Surgery, 535
East 70th Street, New York 21, New York.

1 C. Moureu and J. C. Boncraxp, Bull. Soc. Chim. Belges 5.
846 [1909].

2 A. T. Bromquist and E. C. Wixstow, J. Org. Chem. 10, 149
[1945].

basis of a D.) symmetry eight of the nine funda-
mental frequencies and carried out a normal co-
ordinate treatment. The same investigations were
later repeated by MiLLer, Haxxan and Cousixs 6, all
but one of the fundamentals were directly observed
by locating many more Raman lines and infrared
bands and the vibrational assignments were revised.
The near ultraviolet spectrum of this molecule in
solution and vapour phase was studied and a vibra-
tional analysis of one of the two band systems was
made by MitLer and Hanxnan7. Carbon subnitride
has the same conjugated bond system as dimethyl-

3 C. Mourevu and J. C. Boxeraxp, Ann. Chem. 14, 5 [1920].

+ R. B. Hasxan, sr. and R. L. Coruix, Acta Cryst. 6, 350
[1953].

5 F. A. MmLer and R. B. Han~ax, sr., J. Chem. Phys. 21,
110 [1953].

6 F. A. MiLLer, R. B. Hannan, Jr., and L. R. Cousins, J. Chem.
Phys. 23, 2127 [1955].

7 F. A. MicLer and R. B. Haxxax, sr., Spectrochim. Acta 12,
321 [1958].
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triacetylene 8, plus a pair of nonbonding electrons
with opposite spins on each nitrogen atom and
should therefore exhibit all the z-7 transitions of
dimethyltriacetylene in addition to the n-z transi-
tions . MiLLer and HanNax 7 explained the two ob-
served band systems and made a new vibrational
assignments for the ground and upper states in con-
junction with the earlier investigations 9. The
results favour a linear conformation in both the
ground and upper states. The fundamental frequen-
cies in ¢cm™ ! for carbon subnitride in the ground
state are given in Table 1.

Symmetry | Fre- Schematic Description of the ?bn
Species | quency Mode ‘ rsngnt
¥y Symmetrical C=N stretching 2290

2t 1,  Symmetrical C=N stretching 2129
vy Symmetrical C—C stretching 692

) 17y Asymmetrical C=N stretching 2241
2 r;  Asymmtetrica C—C stretching 1154

- ¢  Asymmetrical C—C=Nbending 504
e v;  Asymmetrical C—C=C bending 263
Vg Symmetrical C—C=N bending 472

Tu vy  Symmetrical C—C=C bending 107

Table 1. The observed fundamental frequencies in cm—! for
carbon subnitride.

It is the aim of the present investigation to evalu-
ate the mean amplitudes of vibration by the Cyvix
method 1° with the recent vibrational and structural
data*7, compute the statistical thermodynamic
functions on the basis of a rigid rotator, harmonic
oscillator model and calculate the molecular polariz-
ability and derived polarizabilities by the LippincorT—
SturmMaN method 1! employing the delta-function
potential for carbon subnitride.

787
Mean Amplitudes of Vibration

The carbon subnitride molecule having a point
group Dy, gives rise to thirteen vibrational degrees
of freedom constituting nine fundamental frequen-
cies which are distributed under the various irre-
ducible representations as follows:

32 (R,p)+22,(1, ) +2 7R, dp) + 2 7, (I, L)

where R, I, p, dp, ‘ and L stand for Raman active,
infrared active, polarized, depolarized, parallel and
perpendicular, respectively. On the basis of its struc-
ture one could expect a resonance between the two
C—C vibrations because of mechanical coupling
provided by the connecting C=C bond and a con-
sequence of which the energy levels would repel one
another resulting in one being abnormally high and
the other abnormally low. This is evidently seen
from 692 cm™! as the frequency of the C — C sym-
metrical stretching vibration and 1154 cm™! as the
C—C asymmetrical stretching vibration. A similar
situation may be observed in the case of dimethyl-
triacetylene 12. This gives an additional support to
MiLLer and Hannax 6 7 for their choice of 692 cm™1
as the frequency of the C — C symmetrical stretching
vibration.

Thirteen internal coordinates have been selected
here to describe the thirteen vibrational degrees of
freedom and they are given as follows: r; and r, are
the C=N stretching coordinates; ¢ is the C=C
stretching coordinate; d; und d, are the C—C-
stretching coordinates; ©; and @, designate the
C — C=N bending coordinates in the x z plane while
O, and 6, designate the same in the yz plane;
b, Dy, D, and D, designate the C — C=C bend-

ing coordinates in the x z and y z planes as those of

Fig. 1. Geometric illustration of the internal coordinates for carbon subnitride. The symbols denote the deviations from the
equilibrium values. The equilibrium C=N, C—C and C=C bond lengths are identified by the symbols R, D and T, respectively.

8 M. Bekr, J. Chem. Phys. 25, 745 [1956].
9 J. R. Prart, J. Opt. Soc. Amer. 43, 252 [1953].
10§, J. Cyvin, Spectrochim. Acta 15, 828 [1959].

" E. R. Lieeixcorr and J. M. Sturman, J. Phys. Chem. 68.
2926 [1964].

12 1, M. MiLts and H. W. Tuomeson, Proc. Roy. Soc., Lond.
A 226, 306 [1954].
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©’s (see Fig.1). The equilibrium interbond dis-
tances C=N, C=C and C — C are being represented
here by the symbols R, T and D, respectively. On the
basis of the principle outlined by WiLsox 13, a set of
symmetry coordinates satisfying the conditions of
normalization, orthogonality and transformations of
the concerned irreducible representations has been
constructed with the help of the internal coordinates
described above and given in the following:

$1(2") = (ri+712)/V2;

S-_’(‘}:‘;) =1;

S3(2¢") = (dy +dp) [V2;

S4(3)) = (r—rs) [V2;

S5(2) = (dy —dy) [V2;

Sea( 775 ) = (RD)"(0; - 6,)[V2;
Sov(7g) = (RD)*(6, — 05 [V2;
Sta( e ) =(DT)"(Dy—Dy)|V2;
Sw(ag) = (D T)l/:(®1/— Q)Z')/]/Q;
Ssa( 7 ) = (RD)"* (O, + O,) [V2;
Sgp (7, ) = (RD)"(0, + 92,)/1/2;
Soa (7 ) = (D T)"*(Dy + D) [V2
Son (7t ) = (DT)"™ (D, + D) V2.

and

Here the angle displacements are multiplied by the
equilibrium bond lengths R(C=N), T(C=C) and
D(C—-C) in order to keep the dimensions of the
mean-square amplitude quantities referring to the
angle bending the same as those of the quantities due
to the bonded atom pairs. On the basis of the prin-
ciple postulated by WiLsox ! and FericLe and
MeisTer 4, the G matrix elements related to the
kinetic energy have been obtained in terms of the
above set of symmetry coordinates. One would
normally expect twenty five mean-square amplitude
quantities for a molecule of the present investigation,
but the high symmetry of the molecular system
reduces these to fifteen. Since the parallel and per-
pendicular vibrations do not occur in the same
symmetry species, the mean-square amplitude quan-
tities due to the interaction between the bonded atom
pairs and interbond angles are not at all permitted in

13 E. B. Wison, sr., J. Chem. Phy. 7, 1047 [1939]; 9, 76
[1941].

14 S, M. FericLe and A. G. Meister, J. Chem. Phys. 19, 982
[1951].

15 G. Grockrer, Rev. Mod. Phys. 15,111 [1943].

16 G. Grockrer and J. Tuxg, J. Chem. Phys. 13, 388 [1945].

17 P. Torkineron, J. Chem. Phys. 17, 357 [1949].

18 P. Torkincroxn, Proc. Roy. Soc., Lond. A 64, 32 [1951].
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this case. Following the method of Cyvix1!?, the
symmetrized mean-square amplitude matrices in
terms of the mean-square amplitude quantities were
obtained by introducing the symmetry coordinates.

From the secular equation | ¥ G~1 — EA | = postu-
lated by Cyvix 1%, the secular equations giving the
normal frequencies in terms of the mean-square
amplitude quantities were constructed at the tem-
peratures T =0 and T =298 °K with help of the ~
and G matrices and vibrational and structural
data* 7. Since it is not possible to evaluate all the
symmetrized mean-square amplitude matrices under
the symmetry species 2", the off-diagonal elements
were neglected for the sake of convenience to solve
the diagonal elements. In the cases of other sym-
metry species, there are two diagonal elements and
one off-diagonal element with two equations under
each symmetry species. The equations resulted in
imaginary values for the diagonal elements when the
off-diagonal element was neglected. Hence the off-
diagonal element was taken into consideration and
the equations were solved under each symmetry
species in the manner described by earlier investiga-
15=22 The calculated values of the symmetrized
mean-square amplitude matrices in A2 are given in
Table 2 at the temperatures T =0 and T =298 °K,
and the calculated values of the mean-square ampli-
tude quantities in A2 at these temperatures are given

tors

|Symmetrized mean-square amplitude
Element matrix

=0 T=298 °K
By I 0.0009553 0.0009553
s 0.0012464 0.0012485
3 0.0013076 0.0013154
i 0.0014564 0.0014564
Py 0.0021246 0.0021382
% —0.0008138 —0.0008247
Ds 0.0078135 ! 0.0131246
g 0.0021854 | 0.0025544
Dss 0.0039182 | 0.0095125
2o 0.0035675 0.0088236
ki . —0.0009984 0.0021078

Table 2. Symmetrized mean-square matrices in A2 for carbon
subnitride.

19 J. Duscuesse and L. Burnerie, J. Chem. Phys. 19, 1191
[1951].

J. Duscuesne and A. H. Nieusen, J. Chem. Phys. 20, 1968
[1952].

J. W. Lixserr and D. F. Heatn, Trans. Faraday Soc. 48,
592 [1952].

S. Smrru and J. W. Lixnerr, Trans. Faraday Soc. 52, 891
[1956].

[
S
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| Mean-square amplitude quantity
Symbol ‘
T=0 T =298 °K
or 0.0012059 0.0012059
Orr —0.0002506 —0.0002506
7} 0.0017161 0.0017268
Odd | —0.0004085 —0.0004114
ot | 0.0012464 0.0012485
Ord | —0.0008138 —0.0008247
0o 0.0058658 0.0113186
06 —0.0019477 . —0.0018061
0p 0.0054331 0.0104261
Opop —0.0018656 —0.0016025
Oog 0.0005935 0.0023311
Opiq 0.0021082 0.0021080
0.0029625 0.0029753
Or+d+t 0.0033546 0.0033565
Or+2d + ¢ 0.0038211 0.0038367
02r +2d + t 0.0057722 0.0057899

Table 3. Mean-square amplitude quantities in A2 for carbon
subnitride.

in Table 3 where o,, 6; and o; are the mean-square
amplitude quantities due to the bonded atom pairs
C=N, C—-C and C=C, respectively; oo and oo
are the quantities due to the bendings C — C=N and
C — C=C, respectively; o,,, 644, 6,4, 066 , 068 , Go
and oee are the respective interaction quantities;
Orids Od+ts Orvd+ts Or+2d+t and 027 +2d+t are the
quantities due to the nonbonded atom pairs

Ny -G, G-G, Ni-Gy,
N;—-C; and N;—N,,
respectively. The corresponding calculated values of

the mean amplitudes of vibration in A for the bonded
as well as nonbonded atom pairs are given in Table 4.

Mean amplitude of
Distance vibration

T=0 T=298 °K
C=N 0.0347 0.0347
C—-C 0.0414 0.0416
C=C 0.0353 0.0354
N,—C, 0.0459 0.0459 Table 4.
Cl—C3 0.0544 0.0545 Mean amplitudes
Ni—C, 0.0579 0.0579 of vibration
N,—C, 0.0618 0.0620 in A for carbon
N,—N, 0.0759 0.0761 subnitride.

23 A. A. Wsstenserc and E. B. WiLson, Jr., J. Amer. Chem.
Soc. 72,199 [1950].

24 A. Lancsetn and C. K. MorLer, Acta Chem. Scand. 4, 725
[1950].

25 L. Pavuine, H. D. Serincarr, and K. J. PaLmer, J. Amer.
Chem. Soc. 61, 927 [1939].

26 A. H. Netnercor, J. A. Kueiy, and C. H. Towses, Phys. Rev.
86,798 [1952].
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The mean-square amplitude quantities due to the
bendings are very much greater than those due to the
bonded and nonbonded atom pairs. The situation is
reversed for the corresponding force constants. The
quantities due to the nonbonded atom pairs are very
greater than those due to the bonded atom pairs. The
values of the mean-square amplitudes of vibration at
the two temperatures are not very different for the
parallel vibrations but they are for the perpendicular
vibrations. In the cases of nonbonded atom pairs,
the mean amplitudes of vibration are in the increas-
ing order as expected with the increase of interbond
distances. In the cases of bonded atom pairs, the
mean amplitudes of vibration are in the decreasing
order with the increase of bond orders (see Table 4).
Of particular interest is the fact that the interbond
distances in carbon subnitride are about the same as
those found in the three related molecules 23726,
cyanoacetylene, hydrogen cyanide, cyanogen and
diacetylene, hydrogen cyanide, cyanogen and di-
acetylene. The mean amplitudes of vibration at room
temperature are as follows: 0.0347 A in carbon sub-
nitride, 0.0349 A in cyanogen 2” and 0.0342 A in
hydrogen cyanide 28 for the C=N bond; 0.0416 A
in carbon subnitride and 0.0419 A in cyanogen %7
for the C—C bond; 0.0354 A in carbon subnitride
and 0.0358 A in acetylene 2 for the C=C bond.
This clearly shows that the addition of the third
triple bond to a conjugated system has only a minor
effect on the structure. Hence the values of mean
amplitudes of vibration are readily transferable to
related systems having similar chemical bonds with
nearly identical interbond distances.

Thermodynamic Functions

The molar thermodynamic functions such as heat
content, free energy, entropy and heat capacity of
carbon subnitride were calculated using the vibra-
tional and structural data 7 for the temperature
range 100 — 6000 K. A rigid rotator, harmonic
oscillator model was assumed and all the quantities
were calculated for a gas in the thermodynamic

27 S, J. Cyvix and E. MesinesetH, Acta Chem. Scand. 15,
1289 [1961].

28 E. Mersingsert and S. J. Cyviy, Acta Chem. Scand. 16,
1321 [1962].

29 E. Memsinesetn and S. J. Cyvin, Acta Chem. Scand. 15,
2021 [1961].
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standard gaseous state of unit fugacity (one atmos-
phere). The standard formulae and tables of func-
tions for the harmonic oscillator contributions were

used from Pirzer 3°. The principal moments of

T (Hy-E")|]T —(Fy-E")|T S0 )’
100 9.026 37.584 46.610 11.944
150 10.481 41.289 51.770 14.758
200 11.853 44.716 56.569 17.186
273.16 13.671 48.709 62.380 19.834
298.16 14.208 49.894 64.102 20.528
300 14.261 50.025 64.286 20.576
400 16.101 54.317 70.418 22.661
500 17.570 58.093 75.663 24.153
600 18.774 61.400 80.174 25.373
700 19.796 64.412 84.208 26.395
800 20.681 66.775 87.456 20257
900 21.453 69.625 91.078 27.997

1000 22.131 71.950 94.081 28.616
1100 22.754 74.062 96.816 29.140
1200 23.213 75.939 99.152 29.583
1300 23.794 77.878 101.672 29953
1400 24.256 79.724 103.980 30.273
1500 24.681 81.564 106.245 30.543
1600 25.036 82.854 107.890 30.773
1700 25.373 84.540 102913 30.968
1800 25.689 86.173 111.862 31.142
1900 25.994 87.421 113.415 31.298
2000 26.246 388.563 114.809 31.423
2200 26.728 91.257 117.985 31.636
2400 27.173 93.877 121.050 31.816
2600 27.507 95.623 123.130 31.947
2800 27.835 98.068 125.903 32.056
3000 28.113 99.724 127.837 32.145
3200 28.365 101.361 129.726 32.221
3400 28.598 103.018 131.616 32.283
3600 28.794 104.975 133.769 32.334
3800 28.992 106.530 135.522 32.381
4000 29.170 108.029 137.199 32.420
4200 29.316 109.139 138.455 32.453
4400 20.463 111.182 140.645 32.482
4600 29.596 112.502 142.098 32.508
4800 22.703 113.367 143.070 32.530
5000 29.811 114.246 144.057 32,551
5200 20.941 115.863 145.804 32.569
5400 30.034 116.722 146.756 32.584
5600 3C.111 117.482 147.593 32.597
5800 30.189 118.611 148.800 32.608
6000 30.285 119.698 149.983 32.621

Table 5. Heat content, free energy, entropy and heat capacity

of carbon subnitride for the ideal gaseous state at one atmo-

spheric pressure. T is the temperature in °K; the other quan-

tities are in cal. deg= ! mole ! and E,° is the enery of one
mole of perfect gas at absolute zero temperature.

30 K. S. Prrzeg, Quantum Chemistry, Prentice-Hall, Inc., New
York 1953.

31 D. R. Sturw, J. Cuao, T. E. Dercazariaxn, S. T. Happen, H.
Proruet, J. A. Rizos, and A. C. Swansox, Joint Army-Navy-
Air Force Thermochemical Data, The Advanced Research
Projects Agency Programme, U.S. Air Force Contract No.
AF 33(616)-6149, The Dow Chemical Company, Thermal
Laboratory, Midland, Michigan, March 31, 1961.

32 G. T. Amstrone and S. Marantz, J. Phys. Chem. 64, 1776
[1960].

G. NAGARAJAN, E.R. LIPPINCOTT, AND J. M. STUTMAN

inertia were calculated from the X-ray diffraction
study * and their values are:

I, =1,,=27.7126 AWU A2(46.0342x1040 g cm?);
0.

zz

A symmetry number of 2 was assumed in the cal-
culations. The contributions due to the centrifugal
distortion, isotopic mixing and nuclear spins were
neglected in the calculations. The calculated values
of the thermodynamic functions in cal. deg™ ! -mole !
for carbon subnitride are given in Table 5. StuLL
and his associates 3! calculated the thermodynamic
quantities from the earlier vibrational data® and
their values for entropy and heat capacity in cal.
deg™! ! at room temperature are 69.314 and
20.528, respectively. The corresponding values in
cal. deg™'-mole™! from the present study are 64.102
and 20.528, respectively. Their higher value for the
entropy is probably due to the unreliable vibrational
assignments particularly for the deformation modes.
AmsTroNG and Marantz 32 measured the heat of
combustion of carbon subnitride in the liquid state
and calculated the heat of formation in the gaseous
state at room temperature as 120.6 kcal. mole™!
from the data for the heat of vapourization given by
Saceromo 32, No other experimental or calculated
values of the thermodynamic quantities are available
in the literature.

‘mole

Molecular Polarizability

On the basis of quantum mechanical models
several approaches have been made in recent years
and developed in many ways to compute the atomic
and molecular polarizabilities in order to test how
far the polarizability could be a useful criterion for
testing the accuracy of wave functions chosen 34739,
Lippincorr and Sturman ! developed from a delta-
function potential a method of generating component
polarizabilities in order to compute the molecular or
average polarizabilities with ay= (ay+a, +a3)
where a;, a, and a; refer to the three principal

33 A. J. Saccromo, J. Org. Chem. 22,1171 [1957].

34 H. R. Hassrt, Proc. Cambridge Phil. Soc. 26, 542 [1930].

35 R. A. Buckineguam, Proc. Roy. Soc., Lond. A 160, 94[1937].

36 J. G. Kirkwoon, Physik. Z. 33, 57 [1932].

37 R. P. BerL and D. A. Lone, Proc. Roy. Soc., Lond. A 203,
364 [1950].

3 J. A. Assorr and H. C. Borrox, J. Chem. Phys. 20, 762
[1952].

# H. J. Koker and M. Karrrus, J. Chem. Phys. 39, 2011
[1963].
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polarizability components. The molecular polariz-
ability is composed mainly of bond parallel com-
ponents obtainable from molecular delta-function
model and bond perpendicular components ob-
tainable from the atomic delta-function polarizabili-
ties. In addition, corrections to the parallel and per-
pendicular components are made to compensate for
polarity effects. The contribution to the parallel com-
ponent by the bond region electrons is calculated
using a linear combination of atomic delta-function
wave functions representing the two nuclei involved
in the bond and analytically expressed as

2,0, =4n dy5(1/ay) ((22))2

where A, is the root mean-square delta-function
strength of the two nuclei, g, the Bonr radius, n the
bond order and (z?) the mean-square coordinate of
a bonding electron which may be expressed as

<12> = (R2/4) + (1/2 c?) .

Here R is the internuclear distance at the equilibrium
configuration.

The nonbond region electron contribution to the
parallel bond component a , is calculated from the
fraction of the electrons in the valence shell of each
atom not involved in bonding and its respective
atomic polarizability; and the basis for such calcula-
tion is the LEwis—Lanemulr octet rule 4 4! modified
by Linnerr #2 as a double-quartet of electrons. As an
example, the electronic configuration of carbon sub-
nitride is given according to the LinNerT electronic
picture of bonding as follows

XN x: Cx-C % Cx-C x: N

where the “dots” represent electrons with spins of
+1/2 and the “crosses” electrons with spins of
—1/2. If each nitrogen atom has two electrons in
its ground electronic or valence shell, then the non-
bond region electron contribution for this molecule
is a,, = (4/5)ay since 2 of 5 electrons in the valence
shell of each nitrogen atom are not involved in the
bond formation according to the LinnerT electronic
picture of bonding 3. This may analytically be
expressed as X' a, , =2 f; a; where f; is the fraction
of electrons of the j th atom not involved in the bond
formation and a; the atomic polarizability of the jth

40 G. N. Lgwis, J. Amer. Chem. Soc. 38, 762 [1916].
4t 1. Laxemuir, J. Amer. Chem. Soc. 38, 2221 [1916].
42 J. W. Lizyert, J. Amer. Chem. Soc. 83, 2643 [1961].
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atom which would be obtainable from delta-function
strength.

Lippincorr and Sturman '! assumed that the per-
pendicular component of a diatomic molecule is
simply the sum of the two atomic polarizabilities and
this assumption is partially justified by a pictorial
representation of perpendicular distortion. a =2 ay
for a non-polar diatomic A, molecule. This principle
was extended to polyatomics from a consideration of
the structure of the molecule and the assumption
that each atom if it were not bonded would possess
three degrees of atomic polarizability freedom. If an
atom forms one bond, one degree of freedom is lost,
e. g., a diatomic molecule has 4 residual degrees of
freedom. If an atom forms 2 bonds which are linear,
only one degree of freedom is lost, e. g. ngs for CO,
is only 6. Extending this principle to the carbon
subnitride molecule, the atomic degrees of freedom
remaining is 12. One may refer the earlier in-
vestigation !! for a more detailed description. Thus
the delta-function model gives explicit expressions
for the parallel and perpendicular components and
the mean polarizabilities for the diatomic as well as
polyatomic systems. All these are in accordance with
the investigations of DexsicH #? regarding the bond
refractions and bond and molecular polarizabilities.

The delta-function strengths A’s in atomic units,
atomic polarizabilities @’s in 1072 ¢cm? and ¢’s in
atomic units adopted from the earlier investiga-
tions ! for the present work are as follows:

AN:09277 1)‘27.43, C_\':4'.14-6,
Ag= 0.846, Ae = 9.78, CcC= 3.384.

The ¢ value for the carbon atom has been obtained
in the manner described by Lippincorr and Dav-
HorF 4 for a bond of polyatomic system. The cal-
culated values of the polarizabilities in 10725 cm?
for the C=N, C —C and C=C bonds are 21.309,
13.268 and 23.034, respectively. The total value of
the polarizability contribution to the parallel com-
ponent from the bond region electrons is obtained as

Xa,=92.188x 10725 cm?.

The value of the polarizability contributions to the
parallel component from the bond region electrons is
given as

Ya, =2 fa;=5.944 <107 cm3.

43 K. G. Dexsicu, Trans. Faraday Soc. 36, 936 [1940].
# E. R. Lierixcorr and M. O. Daynorr, Spectrochim. Acta
16, 807 [1960].
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The calculated value of the sum of the perpendicular
components of all the bonds in the molecule is given
as

22a) =107.960 x 10~25 cm?®.

Hence the average molecular polarizability for car-
bon subnitride has been obtained as follows:

ay = }%(l‘aqh‘{‘jam1+22 aJ_)
=68.696 x 10725 cm3.

There is no experimental value available in the
literature for molar refraction of carbon subnitride
to derive the molecular polarizability and make a
comparison here.

Absolute Raman Intensities of X," Modes

There will be a change in the electron distribution
and in the forces binding the nuclei when there are
changes in the internuclear distances within the
molecule; consequently, there will also be a change
in the value of the electron polarizability. Much work
has so far not been done on this aspect. There is an
increase of the polarizability of the covalent bond as
the bond goes from lower to a higher vibrational
state. If the polarizability is a sensitive measure of
the distortion of an electronic distribution under an
applied electro-magnetic field, then the change in the
polarizability with respect to the internuclear distance
between the two atoms should be an effective cri-
terion for the covalency of a chemical bond. This
quantity o’ = (da/0R) on which the absolute in-
tensity of the Raman scattering depends is experi-
mentally measurable from Raman spectroscopic
techniques. Absolute Raman intensities are deter-
mined by the derivatives of molecular polarizability
with respect to elongations of the various bonds
within the molecule. When a bond stretches, the
major change in the molecular polarizability is
localized in that bond and so the derivative is a bond
property indirectly related to the force constant. The
value of the polarizability derivative depends on the
bond type #. It is exceedingly small for a pure ionic
bond and very much larger for a pure covalent bond.
The recent investigations on the group IV tetra-
halides %6 show that it has been assumed to be pro-
portional to the percent covalency and to the sum of

4 D. A. Lo~g, Proc. Roy. Soc., Lond. A 217, 203 [1953].
46 L. A. Woopwarp and D. A. Lo~g, Trans. Faraday Soc. 45.
1131 [1949].
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the atomic numbers of the central and peripheral
atoms. It is directly proportional to the bond order
for the hydrocarbon gases 47. The observed intensity

of a Raman line is given by
= (022 6 )
32 ( 60,,) (\6~70)

KM(vy—rp)*t
vp[1—exp(—h vo/k T]
where K is a constant, M the molar concentration of
the scattering species, v, the vibrational frequency
of the pth normal mode Q,, k the BoLrzmann con-
stant, T the temperature in °K, a the average mole-
cular polarizability and ¢ the degree of depolariza-
tion of the observed spectral line. Hence measure-
ment of the intensity of a Raman line provides an

Ip=

immediate calculation for the experimental value of
(0a/0Q) through well defined transformation,
(0a/O0R) . Tt is aimed here to derive a functional form
(0a/0R) for the symmetrical stretching mode of a
diatomic and polyatomic systems from the delta-
function potential and apply this to the X'," modes of
oscillation in carbon subnitride.

The polarizability contribution from the bond
region electrons to the bond parallel component for
a polyatomic system is directly given here from the
delta-function potential as follows:

ay=4nAp(1/ag) [ (R¥4) + (1/2 cx®) ]2

On differentiating this with respect to the inter-
nuclear distance R and neglecting terms of small
magnitude, we have the following:

(02,,/0R) =n A5 (1/ay) (R?).

The molecular polarizability of a diatomic molecule
is written as follows:

2= (1/3) (3, +2 21).
The necessary desired quantity is the change in the
molecular polarizability due to the symmetrical
stretching of the bond and the following approxima-
tion may be satisfied:

(0a/0R) = (da;,/OR).

The quantity (da|,/0R)? is assumed to be directly
proportional to the absolute Raman intensity of the
stretching mode in the ground electronic state. Hence
we have

(8a/0R) = (1/3) (8a,/0R)
— (1/3) (Oa3/0R) =n A1 (1/3 ag) (R®).
47 H. J. Bernstey and T. Yosuivo, Paper read at the Institute

of Petroleum Hydrocarbon Research Graoup Conference
on Molecular Spectroscopy, London, February 1958.
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As the absolute intensities of Raman lines due to the
symmetrical C=N, C — C and C=C stretching vibra-
tions depend on the derivatives of the polarizabilities
of the respective bonds, such calculations have been
made here from the above derived equation using
the internuclear distances, delta-function strengths,
Bour radius, etc. given earlier for carbon subnitride.
The calculated values of the polarizability derivatives
in A2 for the C=N, C—C and C=C bonds are
2.347, 1.227 and 2.411, respectively. These values
compare well with those measured experimentally in
other related systems having similar chemical bonds.
They are 2.61 A2 for the C=N bond in acetonitrile 48,

48 G. W. Cuantry and R. A. Praxg, J. Chem. Phys. 35, 1027
[1961].
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1.37 A2 for the C — C bond in ethane % and 2.92 A2
for the C=C bond in acetylene . The bond region
electrons alone are involved in the calculation of
polarizability derivatives and the nonbond region
electrons do not have any influence on the polariz-
ability derivative. As in the case of polarizability,
polarizability derivatives also increase with the in-
crease in the bond order. From the results of the
present investigation it is seen that the derivatives of
polarizabilities are in general transferable from one
molecular system to another with similar chemical
bonds with nearly identical internuclear distances.

4 T, Yosmivo and H. J. BernstrIN, Spectrochim. Acta 14,
127 [1959].

Light Mixing and the Generation of the Second Harmonic
in a Plasma in an External Magnetic Field'

WitaeLm H. KeceL

Institut fiir Plasmaphysik, Garching bei Miinchen

(Z. Naturforschg. 20 a, 793—800 [1965] ; received 9 February 1965)

The theory of light scattering in a plasma is extended by including an external electric field
(e.g. the field of a laser beam) in calculating the density fluctuations. It is shown that in the
presence of a time constant homogeneous magnetic field there arise density fluctuations with the
frequency and the wave number of the external electric field. Expansions of the general expressions
are obtained for the case that the frequency is large compared to the electron gyrofrequency. The
special case that the external electric field is a transverse wave is discussed in detail.

The light of a second beam may be scattered by these forced density fluctuations. The scattered
light has the sum and the difference frequency of the two light beams, i.e. light mixing occurs. In
the framework of this theory the effect occurs only if the two beams are parallel. — If one con-
siders the scattering of the same beam that forces the density fluctuations, the scattered light is the

second harmonic.

In the past few years several papers have been
published dealing with the problem of the scattering
of electromagnetic waves in a plasma. The radiation
energy dl,(w,,k,) with the frequency ®, and the
wavevector K, that is scattered per second into a
given solid angle do is given by

Al (w,, k) =
. 12\ dw,
Jim L1 (0, 1) ([n (e, 0)2) S22 0.do (1)

where J,(»,, K,) is the primary intensity with the
frequency w,, and the wave vector k,, o. is the
scattering crossection for a single electron and T is

! The basic ideas of this paper were reported in Proc. VI'"
Intern. Conf. Ionization Phenomena in Gases, Vol. III, p.
189, Paris 1963.

the duration of observation. The ensemble average is
denoted by ( ) and n(k,w) is the Fourier trans-
form of the electron density, where kK and o are
given by

k,=k,+k

or k.=k,—k

These conditions mean that in general the K-vectors
must form a triangle.

From eq. (1) and (2) follows that the spectral
distribution of the scattered radiation represents the
spectral distribution of the electron density fluctua-
tions, if the primary radiation is monochromatic. By
this the problem of calculating the spectrum of the
scattered radiation is reduced to the problem of
calculating the density fluctuations. This problem has

(2a)
(2b)

and wy,=w;+w

and wy=w;—.



